用创新的技术,为客户提供高效、绿色的驱动解决方案和服务

以科技和创新为客户创造更大的价值

公司新闻

遥感数据处理(遥感数据处理流程)

时间:2024-08-17

遥感数据预处理

1、遥感信息处理的流程涉及多个步骤,以获取和利用多谱段遥感数据。首先,数据管理是关键环节,地面接收站获取的原始信息经过一系列处理,如摄影处理、变换、数字化,转化为正片或计算机可读的磁带形式。这些数据被整理成照片集,并进行编目,方便用户挑选和使用。进入预处理阶段,设备对遥感图像进行细致校正。

2、将生成的图像存储为*.tif格式,然后转换为MapGIS内部图像格式*.msi格式,以便于人—机交互解译修改自动分类的结果图。生成的影像与1∶5万地形图具有相同的地理投影,因此,解译的结果与地形图叠合比较好。

3、由于遥感系统空间、波谱、时间以及辐射分辨率的限制,很难精确地记录复杂地表的信息,因而会在数据获取的过程中产生误差。这些误差降低了遥感数据的质量,从而影响了图像分析的精度。因此在图像分析和处理之前需要进行遥感原始影像的预处理。遥感图像预处理又被称作图像纠正和重建,包括辐射校正、几何纠正等。

4、数据预处理:包括图像数据分析,校正,配准,子区裁剪等操作。 2)数据处理:包括图像增强、信息提取等。主要有两方面工作,即图像分类、解译和成矿信息提取。 3)生成专题图层:研究区构造格架、影像构造单元划分,蚀变遥感异常信息以及成矿位场等图层,为多元信息统计分析提供数据源。 遥感图像处理流程(图5-1)。

5、应用软件系统:负责将遥感数据应用于具体的领域,如农业、林业、城市规划等。遥感工作系统工作流程 数据采集:传感器对地球表面进行扫描,收集电磁波辐射数据。数据传输:将采集的数据通过网络传输至数据处理软件进行处理和分析。数据预处理:对数据进行预处理,如大气校正、几何校正、辐射校正等。

遥感数字图像处理与数字图像处理有什么区别和联系

综上所述,遥感数字图像处理和数字图像处理有一定的区别和联系。遥感数字图像处理专注于遥感数据的特殊性和遥感应用领域,而数字图像处理更加通用,并可为遥感数字图像处理提供方法和技术支持。

数字图像处理最早出现于20世纪50年代,当时的电子计算机已经发展到一定水平,人们开始利用计算机来处理图形和图像信息。数字图像处理作为一门学科大约形成于20世纪60年代初期。早期的图像处理的目的是改善图像的质量,它以人为对象,以改善人的视觉效果为目的。

处理方法:不同领域的图像处理方法也有所不同。

遥感图像处理可分为两类:一是为光学处理;二是遥感数字图像处理。遥感数字图像处理离不开计算机,因此又称为计算机图像处理。遥感数字图像处理,根据抽象程度不同可分为三个层次:狭义的图像处理、图像分析和图像解译。狭义的图像处理着重强调在图像之间进行变换。

数字图像是不同亮度值像元的行、列矩阵数据,其最基本的特点就是像元的空间坐标和亮度取值都被离散化了,即只能取有限的、确定的值。所以离散和有限是数字图像最基本的数学特征。

遥感科学与技术专业的就业方向有哪些?

1、农业与林业生产管理:遥感技术在农业与林业生产管理领域有着广泛的应用,如农作物估产、病虫害监测、森林资源调查等。从事农业与林业生产管理的专业人才需要具备遥感技术、地理信息科学、农林科学等方面的知识。

2、遥感科学与技术专业毕业生的就业前景广阔。他们可以在测绘、遥感、地质、水利、交通、农业、林业、石油、矿山、煤炭、国防、军工、城建、环保、文物保护等行业和部门从事与摄影测量与遥感相关的各种工作。在测绘领域,遥感科学与技术专业的毕业生可以参与各类地图制作、规划设计以及空间信息数据库的建设等工作。

3、遥感科学与技术专业可以在测绘类企业从事摄影测量、工程测绘、地图绘制、图像处理等工作,也可以在IT类企业从事3S技术、遥感系统研发、空间信息系统建设等工作。遥感科学与技术是在测绘科学、空间科学、电子科学、地球科学、计算机科学及其学科交叉渗透、相互融合的基础上发展起来的一门新兴边缘学科。

4、遥感科学与技术专业就业方向与就业前景:毕业生可在测绘、遥感、地质、水利、交通、农业、林业、石油、矿山、煤炭、国防、军工、城建、环保、文物保护等行业和部门从事与摄影测量与遥感相关的科研、教学、设计、生产及管理工作。

5、遥感科学与技术专业就业方向:毕业生主要在测绘、地质、林业、农业、资源、环境、交通等传统领域和卫星遥感、大数据、人工智能等新兴领域从事遥感工程项目的设计、实施和管理工作。毕业生可从事摄影测量与遥感、测绘方面的生产、设计、规划和管理及有关教学、科研工作。

6、遥感科学与技术专业就业方向 毕业生可在测绘、遥感、地质、水利、交通、农业、林业、石油、矿山、煤炭、国防、军工、城建、环保、文物保护等行业和部门从事与摄影测量与遥感相关的科研、教学、设计、生产及管理工作。

遥感工作系统组成及其工作流程

总之,遥感工作系统由传感器、数据处理软件、数据库管理系统、地理信息系统和应用软件系统组成,其工作流程包括数据采集、数据传输、数据预处理、数据处理、数据集成、空间分析、应用决策和数据共享。这些步骤构成了一个完整的遥感工作系统,为各行各业的应用提供了数据支撑和决策支持。

遥感系统由平台、传感、接收、处理应用各子系统所组成。负责对探测对象电磁波辐射的收集、传输、校正、转换和处理的全部过程。也就是将物质与环境的电磁波特性转换成图像或数字形式。遥感是以航空摄影技术为基础,在20世纪60年代初发展起来的一门新兴技术。

遥感系统的五个组成部分是信息源、信息的获取、信息的接收、信息的处理、信息的应用。信息源:任何目标物都具有发射、反射和吸收电磁波的性质,这是遥感的信息源。信息的获取:接收、记录目标物电磁波特性的仪器称为传感器或遥感器。

遥感技术系统包括遥感平台、传感器、遥感信息的接收和处理、遥感图像的判读和应用4部分组成。遥感平台 遥感平台是遥感中搭载传感器的运输工具。传感器 传感器是远距离探测和记录地物发射或反射电磁波能量的遥感仪器,是遥感技术系统的核心。

遥感系统组成:信息源:指待监测的事物,即监测对象。一切物质都具有吸收和反射电磁波的能力,依据其内部结构与相关性质的不同,可监测出特定的事物,从而获得关于监测对象的相关信息。

遥感数据及其处理

1、打开arcgis,加载需要处理的遥感影像,在数据原图层上右击,点击属性。在图层属性,切换到符号显示子界面,可以看到忽略背景值的选项。然后勾选忽略背景值前的复选框,忽略背景值0,颜色显示为空。然后点击应用确定后返回数据窗口,查看遥感数据,周围的黑边已经看不到了。

2、遥感图像处理主要使用加拿大专业遥感图像处理软件PCIGeomatica0及美国著名专业遥感图像处理软件ENVI5。 (二)数据处理流程 遥感数据处理的主要流程包括数据组织(即数据种类选择、范围确认、时相选择、订购等)、数据镶嵌(单景数据不存在此过程)、几何校正、图像生成、图像增强、图像整饰等过程,见图3-2。

3、遥感信息处理的流程涉及多个步骤,以获取和利用多谱段遥感数据。首先,数据管理是关键环节,地面接收站获取的原始信息经过一系列处理,如摄影处理、变换、数字化,转化为正片或计算机可读的磁带形式。这些数据被整理成照片集,并进行编目,方便用户挑选和使用。进入预处理阶段,设备对遥感图像进行细致校正。

4、对重点矿区(带)进行遥感地质解译,可以通过8波段与多光谱数据融合方法将影像空间分辨率提高到15m,能够达到1∶5万地图草测精度。因此该数据能够满足本次项目中对遥感地质信息提取的要求。 表5-1列出了TM、ETM+遥感数据的主要性能指标。

5、由于传感器响应特性和大气的吸收、散射以及其它随机因素影响,导致图像模糊失真,造成图像的分辨率和对比度相对下降,这些都需要通过辐射校正复原。

遥感信息处理过程

遥感信息处理的流程涉及多个步骤,以获取和利用多谱段遥感数据。首先,数据管理是关键环节,地面接收站获取的原始信息经过一系列处理,如摄影处理、变换、数字化,转化为正片或计算机可读的磁带形式。这些数据被整理成照片集,并进行编目,方便用户挑选和使用。进入预处理阶段,设备对遥感图像进行细致校正。

多谱段遥感信息(见遥感技术)的处理过程是:①数据管理:地面台站接收的原始信息经过摄影处理、变换、数字化后被转换成为正片或计算机兼容的磁带,将得到的照片装订成册,并编目提供用户选用。②预处理:利用处理设备对遥感图像的几何形状和位置误差、图像辐射强度信息误差等系统误差进行几何校正和辐射校正。

第二步:图像融合 将低分辨率的多光谱影像与高分辨率的单波段影像重采样生成成一副高分辨率多光谱影像遥感的图像处理技术,使得处理后的影像既有较高的空间分辨率,又具有多光谱特征。

遥感数据处理的主要流程包括数据组织(即数据种类选择、范围确认、时相选择、订购等)、数据镶嵌(单景数据不存在此过程)、几何校正、图像生成、图像增强、图像整饰等过程,见图3-2。 图3-2 数据处理流程图 (三)数据处理 数据镶嵌 所谓镶嵌,就是将相邻两景图像拼接、形成大图像的过程。

遥感信息处理分析交互解译流程是为广大的遥感地质人员和区域地质人员,在遥感地质填图过程中提供一种方便、快捷的软件应用系统。该系统可以实现从用户进入系统到遥感影像预处理或矢量数据处理—图像增强处理与分析—地质图制作直至地图输出等一体化功能。其工作流程如图3-6。