1、MZM因为铌酸锂材料本身非常稳定,有低损耗、使用寿命长、受温度及系统波长影响小等特点,且马赫增德尔调制器可以处理的信号带宽和光功率都较高,具有波长无关调制特性,能够较好地控制调制性能以及调制光强度和相位,可以实现40Gbit/s以上高数据速率的调制,成为许多先进光调制格式产生的基础。
1、① 按照实验讲义完成实验仪器的连接。② 打开激光器、光强仪、示波器,调节光路,直至在示波器上显示一稳定完整的单峰波形。③ 接着打开功率信号源,微调转角平台,直至示波器上显示出布拉格衍射的零、一级衍射图像即一个良好的双峰波形。
2、摘要 凡是流体都有粘性,当固体在流体中运动时,流体会在固体表面形成边界层。据此推断,用以描述声波多普勒效应的公式应被修正为Fr=Fs*sqrt[(u+v)/(u-v)],并给出验证该公式是否成立的实验方法。大家知道,物理学一直沿用奥地利人J.C.Doppler于1842年给出的公式描述声波多普勒效应。
3、从换能器S1发出的超声波到达接收器S2,所以在同一时刻S1与S2处的波有一相位差:j = 2px/l其中l是波长,x为S1和S2之间距离88。因为x改变一个波长时,相位差就改变2p。利用李萨如图形就可以测得超声波的波长。实验重点 n 了解超声波的发射和接收方法。
4、/2,1,相位法 我感觉应该是相位法,因为驻波法是在信号最强的位置(即波节)读数,而这个位置在实验中不容易找准,可能不是最强的,相位法法中是在李萨如图形变为直线的时候读数,位置准确。产生误差的原因:声波的频率值准确度不够。波节位置不准,可能不是最强点。
5、实验目的了解光电效应及其规律,理解爱因斯坦光电方程的物理意义。 用减速电位测量光电子初动能,求普朗克常数。 实验原理 光电效应金属在光的照射下释放出电子的现象叫做光电效应。
6、若同时有光传过介质,光将 被相位光栅所衍射,称为声光衍射。利用声光衍射效应制成的器件,称为声光器件。声光器件能快速有效地控制激光束的强度、方向和频率,还可把电信号实时转换 为光信号。此外,声光衍射还是探测材料声学性质的主要手段。
1、声光效应就是研究光通过声波扰动的介质时发生散射或衍射的现象。由于弹光效应,当超声纵波以行波形式在介质中传播时会使介质折射率产生正弦或余弦规律变化,并随超声波一起传播,当激光通过此介质时,就会发生光的衍射,即声光衍射。衍射光的强度、频率、方向等都随着超声波场而变化。
2、声光衍射可以分为拉曼-拉斯(Ranman-Nath)衍射和布拉格(Bragg)衍射两种情况。本实验室主要研究钼酸铅晶体介质中的布拉格衍射现象。布拉格方程:θB=sinθB=λfs/2nvs ,其中θB 为布拉格角,λ为激光波长,n为介质折射率,vs 为超声波在介质中的速率。
3、第一阶段是1920-1939年,在这一阶段中发现了两种铁电结构,即罗息盐和系列。第二阶段是1940-1958年,铁电维象理论开始建立,并趋于成熟。第三阶段是1959—1970年,这是铁电软模理论出现和基本完善的时期,称为软模阶段。第四阶段是80年代至今,主要研究各种非均匀系统。
4、通过信息技术与物理学科的整合,凭借形声教材产生的直观、生动形象、即时等声光效应,能刺激、感染和吸引学生,使他们获得较为深刻的感性认识,更好地理解知识。