用创新的技术,为客户提供高效、绿色的驱动解决方案和服务

以科技和创新为客户创造更大的价值

公司新闻

大数据处理能力(大数据处理能力需要的资源有哪些)

时间:2024-07-18

大数据5大关键处理技术

数据挖掘和机器学习算法:大数据的挖掘和分析需要依赖于高效的数据挖掘和机器学习算法,如Scikit-learn、TensorFlow等。数据压缩技术:大数据的存储和管理需要消耗大量的存储空间和计算资源,因此需要使用数据压缩技术来减小数据的大小,提高数据存储和处理的效率。

大数据技术的体系庞大且复杂,基础的技术包含数据的采集、数据预处理、分布式存储、数据库、数据仓库、机器学习、并行计算、可视化等。

大数据处理关键技术一般包括:大数据采集、大数据预处理、大数据存储及管理、大数据分析及挖掘、大数据展现和应用(大数据检索、大数据可视化、大数据应用、大数据安全等)。

大数据的特性包括

1、本题考查大数据。大数据的特性包括:数据量大、数据多样性、价值密度低、数据的产生和处理速度快。

2、大数据的特性包括大量化、多样性、快速化、价值密度低。大量化 指数据的数量巨大。日新月异的信息存储技术使得存储大量数据的成本越来越低,特别是分布式存储技术的日益成熟,逐渐使得存储 PB、EB 甚至 ZB 级别的数据成为可能。多样性 指数据的种类繁多。

3、大数据的特性不包括确定性。大数据的特性有容量、种类、速度、可变性、真实性、复杂性、价值。容量(Volume):数据的大小决定所考虑的数据的价值和潜在的信息。种类(Variety):数据类型的多样性。速度(Velocity):指获得数据的速度。

4、大数据的5V特性包括体呈大、多样性、价值密度低、速度快以及真实性的显著特征、大数据关键技术中,数据釆集阶段主要使用的技术是ETL (Extract,Transform,Load)技术。大数据管理主要使用了分布式并行处理技术,比较常用的有Map Reduce。

如何布局大数据处理分析能力

1、、大数据可视化:处理完的数据需要以简单易懂的方式呈现出来。人脑对大规模数据或文本数据的处理是缓慢的,因此企业可使用可视化工具提升对数据认知、洞察的能力。(远标-ITjob)(4)、大数据分析技术:可视化数据应被解读正确地解读。企业应尽量避免错误的数据解读对认知造成的偏差。

2、将数据库中的数据经过抽取、清洗、转换将分散、零乱、标准不统一的数据整合到一起,通过在分析数据库中建模数据来提高查询性能。合并来自多个来源的数据,构建复杂的连接和聚合,以创建数据的可视化图标使用户能更直观获得数据价值。为内部商业智能系统提供动力,为您的业务提供有价值的见解。

3、数据处理和分析第三步,在这一阶段中的一部分干净数据是去规范化的,包括对一些相关的数据集的数据进行一些排序,在规定的时间间隔内进行数据结果归集,执行机器学习算法,预测分析等。 在下面的章节中,本文将针对大数据系统性能优化介绍一些进行数据处理和分析的最佳实践。